Friction (chs)

A block of mass 3 kg is placed on a horizontal surface. A force of magnitude 20 N acts downwards on the block at an angle of 30° to the horizontal (see diagram).

an '09

4

4

(i) Given that the surface is smooth, calculate the acceleration of the block.

[3]

(ii) Given instead that the block is in limiting equilibrium, calculate the coefficient of friction between the block and the surface. [5]

A block of mass 2 kg is at rest on a rough horizontal plane, acted on by a force of magnitude 12 N at an angle of 15° upwards from the horizontal (see diagram).

Jan 06

- (i) Find the frictional component of the contact force exerted on the block by the plane. [2]
- (ii) Show that the normal component of the contact force exerted on the block by the plane has magnitude 16.5 N, correct to 3 significant figures. [2]

It is given that the block is on the point of sliding.

(iii) Find the coefficient of friction between the block and the plane.

[2]

The force of magnitude 12 N is now replaced by a horizontal force of magnitude 20 N. The block starts to move.

(iv) Find the acceleration of the block.

[5]

- 6 A block B of weight 10 N is projected down a line of greatest slope of a plane inclined at an angle of 20° to the horizontal. B travels down the plane at constant speed.
 - (i) (a) Find the components perpendicular and parallel to the plane of the contact force between B and the plane. [2]
 - (b) Hence show that the coefficient of friction is 0.364, correct to 3 significant figures. [2]

(ii)

Jun'09

B is in limiting equilibrium when acted on by a force of T N directed towards the plane at an angle of 45° to a line of greatest slope (see diagram). Given that the frictional force on B acts down the plane, find T.

- 5 A block of mass $m \log i$ is at rest on a horizontal plane. The coefficient of friction between the block and the plane is 0.2.
 - (i) When a horizontal force of magnitude 5 N acts on the block, the block is on the point of slipping. Find the value of m. [3]

Jun'66

(ii)

When a force of magnitude PN acts downwards on the block at an angle α to the horizontal, as shown in the diagram, the frictional force on the block has magnitude 6N and the block is again on the point of slipping. Find

- (a) the value of α in degrees,
- (b) the value of P.

[8]

6 A block of weight 14.7 N is at rest on a horizontal floor. A force of magnitude 4.9 N is applied to the block.

Jun'08

(i) The block is in limiting equilibrium when the 4.9 N force is applied horizontally. Show that the coefficient of friction is $\frac{1}{3}$.

(ii)

When the force of 4.9 N is applied at an angle of 30° above the horizontal, as shown in the diagram, the block moves across the floor. Calculate

- (a) the vertical component of the contact force between the floor and the block, and the magnitude of the frictional force, [5]
- (b) the acceleration of the block.

[5]

- (iii) Calculate the magnitude of the frictional force acting on the block when the 4.9 N force acts at an angle of 30° to the upward vertical, justifying your answer fully. [4]
- A particle of mass 0.1 kg is at rest at a point A on a rough plane inclined at 15° to the horizontal. The particle is given an initial velocity of 6 m s⁻¹ and starts to move up a line of greatest slope of the plane. The particle comes to instantaneous rest after 1.5 s.

In 16

(i) Find the coefficient of friction between the particle and the plane.

[7]

- (ii) Show that, after coming to instantaneous rest, the particle moves down the plane.
- [2]

[6]

(iii) Find the speed with which the particle passes through A during its downward motion.

0.5 m P

Tv~108

Two particles P and Q are joined by a taut light inextensible string which is parallel to a line of greatest slope on an inclined plane on which the particles are initially held at rest. The string is 0.5 m long, and the plane is inclined at 45° to the horizontal. P is below the level of Q and 3 m from the foot of the plane (see diagram). Each particle has mass 0.2 kg. Contact between P and the plane is smooth. The coefficient of friction between Q and the plane is 1. The particles are released from rest and begin to move down the plane.

- (i) Show that the magnitude of the frictional force acting on Q is 1.386 N, correct to 4 significant figures. [2]
- (ii) Show that the particles accelerate at 3.465 m s⁻², correct to 4 significant figures, and calculate the tension in the string. [5]
- (iii) Calculate the speed of the particles at the instant when Q reaches the initial position of P. [2]

At the instant when Q reaches the initial position of P, Q becomes detached from the string and the two particles travel independently to the foot of the plane.

- (iv) Show that Q descends at constant speed, and calculate the time interval between the arrival of P and the arrival of Q at the foot of the plane. [7]
- A particle P of mass 0.5 kg moves upwards along a line of greatest slope of a rough plane inclined at an angle of 40° to the horizontal. P reaches its highest point and then moves back down the plane. The coefficient of friction between P and the plane is 0.6.
 - (i) Show that the magnitude of the frictional force acting on P is 2.25 N, correct to 3 significant figures. [3]

Jan 107

- (ii) Find the acceleration of P when it is moving
 - (a) up the plane,
 - (b) down the plane.

[4]

- (iii) When P is moving up the plane, it passes through a point A with speed $4 \,\mathrm{m \, s}^{-1}$.
 - (a) Find the length of time before P reaches its highest point.
 - (b) Find the total length of time for P to travel from the point A to its highest point and back to A.

[8]